
Kokkos: Enabling Performance Portablility

Christian R. Trott 1, H. Carter Edwards 1

1Sandia National Laboratories

PACT15, San Francisco, Oct. 18th 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.

SAND2015-9078 C

PACT15, San Francisco, Oct. 18th 2015 2/24

Motivation: Increasing Node Complexity

DDR	

HBM	

DDR	

HBM	

DDR	 DDR	

DDR	

HBM	 HBM	

Kokkos	

LAMMPS	 Trilinos	 Albany	

PACT15, San Francisco, Oct. 18th 2015 3/24

Kokkos the Programming Model

I Machine model
I N execution spaces × M memory spaces
I N ×M matrix for memory access performance/possibility
I Asynchronous execution allowed

I Implementation Approach
I A C++ template library
I Application focused: each feature is requested by application

and used right now
I Performance focused: very high bar for acceptance if a feature

impeders performance
I C++11 required
I Target different back-ends for different hardware architectures

I Distribution
I Open Source library
I Available on Github: github.com/kokkos/kokkos
I Extensive tutorial: github.com/kokkos/kokkos-tutorials

PACT15, San Francisco, Oct. 18th 2015 4/24

Abstraction Concepts

Execution Pattern: parallel for, parallel reduce, parallel scan, task, ...
Execution Policy: how (and where) a user function is executed

I E.g., data parallel range : concurrently call function(i) for i = [0..N)

I User’s function is a C++ functor or C++11 lambda

Execution Space: where functions execute

I Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space: where data resides

I AND what execution space can access that data

I Also differentiated by access performance; e.g., latency & bandwidth

Memory Layout: how data structures are ordered in memory

I provide mapping from logical to physical index space

Memory Traits: how data shall be accessed

I allow specialisation for different usage scenarios (read only, random, atomic, ...)

PACT15, San Francisco, Oct. 18th 2015 5/24

Concepts: Patterns, Policies, and Bodies

for (size_t i = 0; i < N; ++i) {

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i][j] * x[j];

}

y[i] = y_i;

}

Terminology:

I Pattern: structure of the computations
for, reduction, scan, task-graph, ...

I Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

I Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

Pattern Policy

B
o

d
y

PACT15, San Francisco, Oct. 18th 2015 6/24

Patterns: parallel for

Example: y = Ax

#pragma omp parallel for

for (int i = 0; i < N; ++i) {

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i][j] * x[j];

}

y[i] = y_i;

}

parallel_for(N, [=] (const size_t i) {

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i][j] * x[j];

}

y[i] = y_i;

});

O
p
en

M
P

K
o
k
ko

s

PACT15, San Francisco, Oct. 18th 2015 7/24

Patterns: parallel reduce

Example: 〈yT |Ax〉

double yAx = 0;

#pragma omp parallel for reduction (+: yAx)

for (int i = 0; i < N; ++i) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A[i][j] * x[j];

}

yAx += y[i] * Ax_i;

}

double yAx = 0;

parallel_reduce(N, [=] (const size_t i, double& yAx_thread) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A[i][j] * x[j];

}

yAx_thread += y[i] * Ax_i;

}, yAx);

O
p
en

M
P

K
o
k
ko

s

PACT15, San Francisco, Oct. 18th 2015 8/24

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data("label", N0 , N1, N2); 3 run, 0 compile

View <double **[N2]> data("label", N0, N1); 2 run, 1 compile

View <double *[N1][N2]> data("label", N0); 1 run, 2 compile

View <double[N0][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

PACT15, San Francisco, Oct. 18th 2015 8/24

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data("label", N0 , N1, N2); 3 run, 0 compile

View <double **[N2]> data("label", N0, N1); 2 run, 1 compile

View <double *[N1][N2]> data("label", N0); 1 run, 2 compile

View <double[N0][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

PACT15, San Francisco, Oct. 18th 2015 9/24

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*> data) { data (0) = 3; }

View <double*> a("a", N0), b("b", N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*> c(b);

assignValueInView(c);

print a(0)

What gets printed?
3.0

PACT15, San Francisco, Oct. 18th 2015 9/24

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*> data) { data (0) = 3; }

View <double*> a("a", N0), b("b", N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*> c(b);

assignValueInView(c);

print a(0)

What gets printed?

3.0

PACT15, San Francisco, Oct. 18th 2015 9/24

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*> data) { data (0) = 3; }

View <double*> a("a", N0), b("b", N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*> c(b);

assignValueInView(c);

print a(0)

What gets printed?
3.0

PACT15, San Francisco, Oct. 18th 2015 10/24

Views (3)

Example: 〈yT |Ax〉

#include <Kokkos_Core.hpp >

int main(int argc , char* argv []) {

// Initialize Kokkos analogous to MPI_Init ()

Kokkos :: initialize(argc , argv);

...

Kokkos ::View <double**> A ("A", N,M); // Allocate matrix "A"

Kokkos ::View <double*> x("X",M), y("Y",N); // Allocate vector

...

double yAx = 0;

Kokkos :: parallel_reduce(N, [=] (const size_t i,

double& yAx_thread) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);

}

yAx_thread += y(i) * Ax_i;

}, yAx);

...

Kokkos :: finalize ();

}

PACT15, San Francisco, Oct. 18th 2015 11/24

What is a node?

Compute nodes will be heterogeneous in cores and memory:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Many-core revolution: 20-year “just recompile” free ride is over.

How much do I have to learn and change to use these nodes?

PACT15, San Francisco, Oct. 18th 2015 11/24

What is a node?

Compute nodes will be heterogeneous in cores and memory:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Many-core revolution: 20-year “just recompile” free ride is over.

How much do I have to learn and change to use these nodes?

PACT15, San Francisco, Oct. 18th 2015 11/24

What is a node?

Compute nodes will be heterogeneous in cores and memory:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Many-core revolution: 20-year “just recompile” free ride is over.

How much do I have to learn and change to use these nodes?

PACT15, San Francisco, Oct. 18th 2015 12/24

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, ...

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

I ExecutionPolicy<ExecutionSpace>(...)

I Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

I If no ExecutionSpace is provided to an execution policy the
default execution space is used.

I Giving an integer N as policy is equivalent to
RangePolicy<>(N)

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

I ExecutionPolicy<ExecutionSpace>(...)

I Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

I If no ExecutionSpace is provided to an execution policy the
default execution space is used.

I Giving an integer N as policy is equivalent to
RangePolicy<>(N)

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

I ExecutionPolicy<ExecutionSpace>(...)

I Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

I If no ExecutionSpace is provided to an execution policy the
default execution space is used.

I Giving an integer N as policy is equivalent to
RangePolicy<>(N)

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

I ExecutionPolicy<ExecutionSpace>(...)

I Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

I If no ExecutionSpace is provided to an execution policy the
default execution space is used.

I Giving an integer N as policy is equivalent to
RangePolicy<>(N)

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

I ExecutionPolicy<ExecutionSpace>(...)

I Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

I If no ExecutionSpace is provided to an execution policy the
default execution space is used.

I Giving an integer N as policy is equivalent to
RangePolicy<>(N)

PACT15, San Francisco, Oct. 18th 2015 14/24

Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
d o u b l e h e l p e r F u n c t i o n (c o n s t s i z e t s) c o n s t { . . .}
KOKKOS INLINE FUNCTION
v o i d o p e r a t o r () (c o n s t s i z e t i n d e x) c o n s t {

h e l p e r F u n c t i o n (i n d e x) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro (CUDA requires v 7.5)

Kokkos : : p a r a l l e l f o r (n u m b e r O f I t e r a t i o n s ,
KOKKOS LAMBDA (c o n s t s i z e t i n d e x) { . . . }) ;

// Where kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e /∗ #i f CPU+Cuda ∗/

PACT15, San Francisco, Oct. 18th 2015 14/24

Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
d o u b l e h e l p e r F u n c t i o n (c o n s t s i z e t s) c o n s t { . . .}
KOKKOS INLINE FUNCTION
v o i d o p e r a t o r () (c o n s t s i z e t i n d e x) c o n s t {

h e l p e r F u n c t i o n (i n d e x) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro (CUDA requires v 7.5)

Kokkos : : p a r a l l e l f o r (n u m b e r O f I t e r a t i o n s ,
KOKKOS LAMBDA (c o n s t s i z e t i n d e x) { . . . }) ;

// Where kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e /∗ #i f CPU+Cuda ∗/

PACT15, San Francisco, Oct. 18th 2015 15/24

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

PACT15, San Francisco, Oct. 18th 2015 17/24

Example: Spaces

Example: 〈yT |Ax〉

...

// Allocate explicitly in CudaSpace

Kokkos ::View <double**, Kokkos ::CudaSpace > A ("A", N,M);

Kokkos ::View <double*, Kokkos ::CudaSpace > x("X",M), y("Y",N);

...

double yAx = 0;

// Run explicitly in the Cuda execution space

Kokkos :: parallel_reduce(Kokkos :: RangePolicy <Kokkos ::Cuda >(N),

KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);

}

yAx_thread += y(i) * Ax_i;

}, yAx);

...

PACT15, San Francisco, Oct. 18th 2015 18/24

Layouts

Important concept: Layouts

Every View has a Layout set at compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ˜50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...
extensible

PACT15, San Francisco, Oct. 18th 2015 18/24

Layouts

Important concept: Layouts

Every View has a Layout set at compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ˜50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...
extensible

PACT15, San Francisco, Oct. 18th 2015 19/24

Example: Layout

Example: 〈yT |Ax〉

...

// Allocate explicitly with LayoutRight

Kokkos ::View <double**, Kokkos :: LayoutRight > A ("A", N,M);

Kokkos ::View <double*> x("X",M), y("Y",N);

...

double yAx = 0;

// Run explicitly in the Cuda execution space

Kokkos :: parallel_reduce(N,

KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);

}

yAx_thread += y(i) * Ax_i;

}, yAx);

...

PACT15, San Francisco, Oct. 18th 2015 20/24

Performance Layout

512 4 k 33 k 262 k 2 M 17 M 134 M
N

0

50

100

150

200
B

an
d
w

id
th

 (
G

B
/s

)

K80 LayoutLeft

K80 LayoutRight

HSW LayoutLeft

HSW LayoutRight

<y|Ax>

NxM = 2^28

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

I Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), ...);

I Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

I Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

I The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

I The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

I Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 22/24

Example: Hierarchical Parallelism

...

// Execution policies use a ’member type’ as argument

typedef Kokkos ::TeamPolicy <>:: member_type team_type;

double yAx = 0;

// Split rows over teams , with Kokkos choosing team size

Kokkos :: parallel_reduce(Kokkos ::TeamPolicy <>(N, Kokkos ::AUTO),

KOKKOS_LAMBDA (const team_type& team , double& yAx_team) {

double Ax_i = 0;

// Do nested dot product with the team

Kokkos :: parallel_reduce(Kokkos :: TeamThreadRange(team , M),

[&] (const int& j) {

Ax_i += A(i,j) * x(j);

},Ax_i);

// Only one thread per team adds to the result

Kokkos :: single(Kokkos :: PerTeam(team), [&] () {

yAx_team += y(i) * Ax_i;

});

}, yAx);

...

PACT15, San Francisco, Oct. 18th 2015 23/24

Performance TeamPolicy

256 4 k 66 k 1 M 17 M 268 M
N

0

50

100

150

200
B

an
d

w
id

th
 (

G
B

/s
)

K80 LayoutLeft

K80 LayoutRight

HSW LayoutLeft

HSW LayoutRight

<y|Ax>

NxM = 2^28

PACT15, San Francisco, Oct. 18th 2015 24/24

Wrap Up

Features which were not discussed:

I Atomics: Support of arbitrary sized atomics

I Team Scratch Pads: Exposes Cuda shared memory functionality

I Algorithms: Sort and Random Numbers

I Containers: DualView, std::vector replacement, unordered map

I ExecutionTags: have classes act as functors with multiple tagged
operators

I Custom Reductions/Scans: use functors with join, init and final functions

I Profiling support: simple inbuild capabilities + hooks for third party tools

Whats next (next couple of years and subject to finding people):

I Kernels package in Trilinos: BLAS, Sparse LA, Graph algorithms

I Task support: under development, prototype on CPUs

I Remote memory spaces: incorporate shmem like capabilities

I More debugging features: e.g. runtime identification of potential write
conflicts

